
BallAX 4 Ballistic Analysis Software

Measurement and Analysis Software

BallAX 4 is used for acquiring and analyzing of ballistic measurement data from firearms, guns, artillery, projectiles and grenades using different ammunition and explosive propellants.

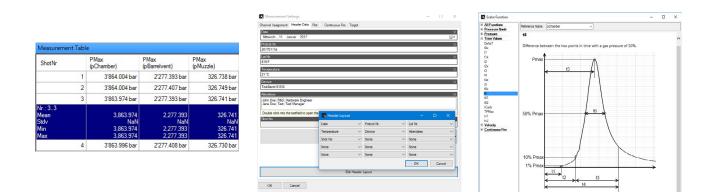
Data gathered by the software aids in determining the accuracy and consistency of a projectile before it exits a firearm. Manufacturers of firearms ranging from basic hunting rifles to critical military artillery will benefit from the precision data afforded by this industry specific software module. BallAX 4 works with all different type of data acquisition instruments from Elsys, with pressure sensors from any different manufacturer and a wide range of Kistler charge amplifiers.

leasuremen	it lable											д
ShotNr	PZero (Pmax-top (gas pressure chamber top) (0.A1))	PMax (Pmax-top (gas pressure chamber top) (0.A1))	PMax (Pmax-left (gas pressure chamber left) (0.A2))	PMax (Ppp (gas pressure barrel vent) (0.A3))	PMax (Pmuz (gas pressure muzzle) (0.A4))	t4 (Pmuz (gas pressure muzzle) (0.A4))	Impuls (Pmax-top (gas pressure chamber top) (0.A1))	Impuls (Pmax-left (gas pressure chamber left) (0.A2))	v (Vstartstop (velocity Start-Stop) (0.A5))	v (Vstartstop (velocity Start-Stop) (0.A6))	vm (Vstartstop (velocity Start-Stop) (0.A5))	Remarks
1	54.0 bar	3'806.0 bar	3'863.9 bar	2'277.5 bar	326.7 bar	4.889 ms	6.542 bar*s	6.736 bar*s	1'100.2 m/s	1'097.9 m/s	1'100.2 m/s	Prototype, confid
2	38.0 bar	3'790.7 bar	3'856.7 bar	2'284.4 bar	335.5 bar	4.835 ms	6.537 bar*s	6.731 bar*s	1'100.0 m/s	1'097.6 m/s	1'100.0 m/s	Prototype, confid
3	31.2 bar	3'731.3 bar	3'793.7 bar	2'285.1 bar	333.3 bar	4.907 ms	6.562 bar*s	6.737 bar*s	1'096.9 m/s	1'094.7 m/s	1'096.9 m/s	Prototype, confi
4	26.7 bar	3'720.8 bar	3'786.5 bar	2'281.0 bar	343.9 bar	4.893 ms	6.567 bar*s	6.761 bar*s	1'095.7 m/s	1'093.5 m/s	1'095.7 m/s	Prototype, confi
5	35.5 bar	3'774.5 bar	3'796.6 bar	2'271.5 bar	332.3 bar	4.887 ms	6.616 bar*s	6.644 bar*s	1'098.8 m/s	1'096.4 m/s	1'098.8 m/s	Prototype, confi
6	24.5 bar	3'826.7 bar	3'825.4 bar	2'314.1 bar	331.6 bar	4.793 ms	6.583 bar*s	6.576 bar*s	1'101.2 m/s	1'098.8 m/s	1'101.2 m/s	Prototype, confi
7	42.0 bar	3'776.7 bar	3'775.8 bar	2'307.6 bar	342.4 bar	4.854 ms	6.554 bar*s	6.575 bar*s	1'100.3 m/s	1'097.9 m/s	1'100.3 m/s	Prototype, confi
	-											
Page >												
Wavefo	rm X											
			1	VUII.tpc5[U,U] (Pmi	ax-top (gas pressure	e chamber top) (U.A.I)); 2007.03.13 15:25:	53; 65 536 Samples;	650 ns j		1	
250	- P	R										
350	- 00											
		1										
bar)	- 00											
Ppp (gas pressure barrel verti) barl Pmuz (gas pressure barrel verti) barl Pmuz (gas pressure mizzle) [barl)	0											
Ppp (gas pressure barrel vent)[bar] Prouz (gas.pressure muzzle)[bar]												
L B D	- 0											
essue of												
Sept.	- 00											
as p (ga												
	00 - 00	++										
<u>а</u> с												
50	00 - 00											
			-									
	0 3		,									
	1				6	N A						
) (velocity Start	3				Å.	1 1						
ocit	P				1	100						
(vel				- V	1	Y Y						

- Single Shot and Continues Fire analysis
- Quick and easy configuration of many analog input channels
- Data visualization of complete test series
- Closed Vessel analysis according to TL 1376-0600
- No programming required
- Target visualization
- More than 30 scalar functions to calculate ballistic specific parameters
- English and German version
- Data export to TPC5 and ASCII data format
- Report generator, based on freely editable MS-Excel templates

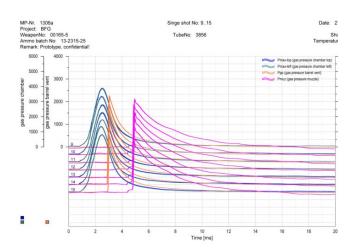
Measurement Table

Parameters


The measurement table shows all measured and calculated data. After each shot, a new line is insert and the calculation of the wished parameters is started. A parameter can be either a predefined scalar calculation like Pmax, t1- 6, bullet speed or any results from a generic formula.

Statistic Calculation

Statistic lines can be insert after any number of shots for calculation of Mean, Standard Deviation, Min and Max values.


Header Data

The header data can be modified and adapted to your needs. All these field and information can be re-used later on for generating the measurement report.

Report Generator

Measurement Reports are generated in BallAX with Excel Templates. Key Words in the template are replaced by the measurement data and header information once the report is generated.

Report					
Test Declaration	%TestDeclaration%				
Location	%Location%				
Job Number	%JobNumber%				
MP-No.	%MPNo%				
Project	%Project%				
Ammo Batch Number	%AmmoBatchNo%				
Tube Number	%TubeNo%				
Shot Load	%Shotload%				
Weapon Number	%WeaponNo%				

Formula Editor

The Formula Editor is a powerful tool for post processing your measurement data or to calculate any parameter which is not already defined in the Scalar Function list of the measurement table.

Target

Target data can be visualized with the built-in Target display. BallAX is compatible with any kind of target hardware type and manufacturer. The calculation of the coordinates can be defined and modified in a formula file.

	1/0515_TBE	_2.exp - C:\L	Jsers\TraNET\Docu	iments\BallAX_4.0\	170515_TBE_2.exp\1	.70515_TBE_2.zip		أروصها المحاد	
Measurement Layout Measurement Table Settings Help	Formula 8	Editor							
	*	f+	=R		Font Size 13	_ Tab	Size 4		
Auto Calculate	•				Auto Comple				
Complie Parts Next Step Ne		Function	Traces Result	s Help Errors					
Formula Breakpoint Over St	p Out	Browser			Auto Formati	ting			
Calculate Debug		Controls				Settings			
ae 🗙	× Measu	Measurement Table							
aveform 🗶 🔎 ballistik.for - Zip (Main) 🗶	× ShotN	r	Date	Filepath	PMax (pChamber)	v (Light Barrier)	For (Xpos)	For (Ypos)	
= #region Analyse data from TraNET Device	*	0 200	45.05.0047.44.0			050.040		0.000	
AnalyseData (Xorigin, Yorigin, d1, d2, d3,dMvA, dMvB, Xpo			15.05.2017 14:0	data\170515_TB	4.649 bar	253.813 m/s	1000	-8.960 mm	
: Final numbers in mm		2	15.05.2017 15:2	data\170515_TB	4.492 bar	247.766 m/s	-0.5 mm	-28.404 mm	
Xpos[mm] = Xpos * 1000		3	15.05.2017 15:2	data\170515_TB	4.303 bar	242.937 m/s	-4.8 mm	10.434 mm	
Ypos[mm] = Ypos * 1000		4	15.05.2017 15:2	data\170515 TB	4.470 bar	252.771 m/s	1.3 mm	2.357 mm	
		5	15.05.2017 15:2		4.420 bar	262.267 m/s		-6.559 mm	
-#endregion									
Function AnalyseData (Xorigin, Yorigin, d1, d2, d3,dMvA, dM		6		data\170515_TB	4.348 bar	252.750 m/s		-0.437 mm	
; Get traces from HW or file		7	15.05.2017 15:2	data\170515_TB	4.398 bar	267.877 m/s	-0.6 mm	21.221 mm	
TrcPair1L = Mikro1		8	15.05.2017 15:2	data\170515_TB	4.400 bar	265.576 m/s	-0.5 mm	-17.788 mm	
TrcPair1R = Mikro2		9	15.05.2017 15:2	data\170515 TB	4.303 bar	236.530 m/s	-0.5 mm	-9.775 mm	
TrcPair2L = Mikro3 TrcPair2R = Mikro4			15.05.2017 15:2		4.640 bar	242.972 m/s		9.215 mm	
TrcStartA = Mikro5									
TrcStopA = Mikro1			19.05.2017 11:0	data\1/0515_18	4.242 bar	246.787 m/s	1.3 mm	-0.838 mm	
TrcStartB = Mikro6	Nr.: 11 E Mean	11	n. def.	n. def.	4.424 bar	252.004 m/s	-2.5 mm	-2.685 mm	
TrcStopB = Mikro4	Stdv		n. def.	n. def.		9.972 m/s		13.832 mm	
TmpTrc = Temperatur	Min		0		4.242 bar	236.530 m/s	-6.7 mm	-28.404 mm	
; Calc everything				0.000	4.649 har	267.877 m/s	13.mm	21 221 mm	50
Temp = CalcTemp(TmpTrc)	Target								[
<pre>vTarLeft = CalcVelocity(TrcStartA, TrcStopA, dMvA)</pre>	Target	t Image Tar	get			Nr.	X [mm]	Y [mm]	
<pre>vTarRight = CalcVelocity(TrcStartB, TrcStopB, dMvB)</pre>				100		2	-4.8	10	-1
vTarMean = (vTarLeft + vTarRight) / 2					_	5			-8
CalcXposYpos(Xorigin, Yorigin, d1, d2, d3, TrcPair1L, Tr		/		64		4	1.3	2.4	-8
		/				5	-6.7	-6.6	
endfunction		/		48		6	-3.5	-0.44	- 1
		/ /				7	-0.56	21	-1
Function CalcXposYpos(Xorigin, Yorigin, d1, d2, d3, M0Trc, M cTemp=GetC Temp(Temp); get sound velocity at Temperature		/	11 -	-32		8	-0.54	-18	-1
corrFac = sqrt(1 - (cTemp^2)/(vTarMean^2))		11	1 10				0.54	10	
	1	1 1		LA LA					
The second se							X [mr	n] Y [mm]]
T0=GetCrossingFromSignal(M0Trc)						Mean	-2,5	1.5	
T1=GetCrossingFromSignal(M1Trc) T2=GetCrossingFromSignal(M2Trc)	80	64 🙀	32 \ 16			Dispersion	-0.55	1.7	
T3=GetCrossingFromSignal(M3Trc)							200 C	13	
						Standard D	eviation 3	13	
; Combination 1: (M0, M1) (M2, M3)		\							
dt1[s]= (T1-T0) / corrFac									
<pre>dt2[s]= (T2-T3) / corrFac xyArr1 = GetXYLocation(dt1, dt2, d1, d2, d3, cTemp)</pre>		/ /			/ /				
xyArr1 = GetXyLocation(dt1, dt2, d1, d2, d3, clemp)		1	<hr/>		/ /				
; Combination 2: (M0, M2) (M2, M3)			~		/				
dt1[s]= (T2-T0) / corrFac		1	· · · · ·		/	•	m		
92 dt2[s]= (T2-T3) / corrFac +			~				Optio	3533	
act[s] (it is) / contract									

Supported Hardware

Data Acquisition Devices

- Elsys TPCX, TPCE, TPCE-LE and TPCI DAQ cards
- Elsys TraNET FE, TraNET PPC and TraNET EPC Data Acquisition Instruments

Charge Amplifier

- Kistler 5011 GPIB
- Kistler 5015A RS232
- Kistler 5017 GPIB
- Kistler 5018A RS232/USB
- Kistler 5080A RS232/USB

Velocity Measurement Systems

- Light Barriers with analog or digital output signals
- Inductive Sensing Coils
- Radar

TraNET EPC up to 64 Channel DAQ 2 - 240 MHZ, ICP/IEPE, 14/16 Bit

TraNET FE 4 - 16 Channel DAQ 2 - 240 MHZ, ICP/IEPE, 14/16 Bit

Targets

- Light Barriers based optical targets
- Acoustic Targets based on microphone arrays

Elsys AG

Elsys AG Mellingerstrasse 12 CH-5443 Niederrohrdorf Switzerland

Telefon: +41 56 496 01 55 Email: info@elsys.ch www.elsys-instruments.com